
QA in Product Development
Delivering quality

CONTENTS

Introduction

What are Bugs?

How Software Bugs can be
Prevented

Types of Testing

Quality Management

Quality Control and Testing

Test Automation

Conclusion

About the Authors

3

6

7

9

12

14

15

19

20

3LeawareLeaware

INTRODUCTION

Quality assurance (QA) is a process-centric approach that
ensures an organization provides the best possible product or
service. It is related to quality control (QC), which focuses on the
result, such as testing samples in a batch after production.
Although these terms are sometimes used interchangeably, QA
focuses on enhancing and improving the process used to create
the final result, not the result itself. QA includes planning,
design, development, production, and service. At Leaware, we
make sure that all our processes go through this important step
to ensure that customers receive a high quality product that
works well and is free from errors.

4LeawareLeaware

Shewhart Cycle

Organizations have access to several QA
tools that guide them through steps to
ensure their processes are efficient. One of
the most popular tools is called the
Shewhart cycle – also known as the
Deming or PDCA cycle – which was
developed by Dr. W. Edwards Deming, a
20th-century American management
consultant. The Shewhart QA cycle
consists of four steps: Plan, Do, Check, and
Act (PDCA). The steps of the Shewhart
cycle are repeated to ensure that the
process is continually evaluated and
improved.

The PDCA Cycle

In the first step (planning) of the PDCA
cycle, the organization defines its goals
and identifies the process or changes
needed to deliver desired results. The
second step (do) develops and tests the
process or change. The third step (check)
monitors and evaluates the process or
change to determine whether the results
meet the goals. The last step (act)
implements the actions needed to achieve
the desired improvement. The cycle can
then be repeated, starting with planning
new goals. At Leaware, we use the PDCA
cycle often. Every objective that we have
set ourselves and progress is tracked so
that when we complete reviews, we can
see what actions have been completed to
improve the product or service.

Plan Plan

Check
Do

Check
Do

Check
Do

Act Act
Finished

1 n...

Plan

5LeawareLeaware

Superior Performance in Every
Component

The Shewhart cycle is an effective QA
method because it analyzes the existing
conditions and methods used to deliver
products or services to customers. The aim
is to ensure excellence in every
component of the process. QA helps to
determine whether the steps used to
provide a product or service are
appropriate for the time and conditions.
Furthermore, if this cycle is repeated
throughout the life cycle of a product or
service, it can help increase workers’
efficiency as processes are continually
improved.

Attention to Detail

QA requires a certain level of detail to be
fully implemented in each step. For
example, planning can include identifying
specific levels of quality or measurable
outcomes that the organization wants to
achieve. Inspections may involve testing
and other objective measures to determine
whether goals have been achieved, rather
than just a subjective assessment of
quality. Taking action may mean
overhauling the manufacturing process to
correct technical or cosmetic flaws or
making small changes to improve efficiency
or accuracy.

Competition to provide specialized
products and services often leads to
breakthroughs, long-term growth, and
change. QA verifies that the product offered
to the customer is produced and supplied
with the best possible materials, in a
comprehensive way, and with high
standards. QA has the goal of exceeding
customer expectations in a measurable and
accountable process.

6LeawareLeaware

WHAT ARE BUGS?

Bugs have varying impacts on a product's performance, ranging
from tiny errors that are easily noticed to serious faults that render
the software unusable. All issues should be proactively addressed
to provide the best possible user experience. Major issues are
usually viewed as urgent and a priority, especially if there's a
chance that the customer would want compensation for the error
or leave a negative review for the software development company.

Consumers could become frustrated and
look elsewhere, assuming the company is
untrustworthy. It is normal to find bugs
when developing digital products, but at
Leaware we focus on looking for the root
cause of them to take them as
opportunities for improvement.

Who is responsible for fixing bugs?

Typically, bugs will be discovered by a
member of the QA team while running
automated tests or by a product manager.
If a bug is missed by developers, QA
testers, or product managers, it may be
identified by a user. This is not ideal, as it
would disrupt the user’s experience and
decrease their satisfaction with the
product.

The responsibility for fixing bugs falls on
developers, either those who created the
product or those who saw issues after
initial development. A developer may
utilize a debugger to track down bugs and
efficiently remove them.

Many bugs can affect a product’s
performance and functionality, but one of
the most common impacts is the software
crashing. A software crash is when the
software stops performing as expected
and shuts down, potentially when the user
is in the middle of completing an action.

For example, a word processing
application could crash while the user is
writing an essay or report. This may cause
them to lose work if they haven’t recently
saved their work, which harms
productivity and a poor perception of the
product.

Typos are also a type of bug. While typos
are small coding errors made by a
developer, they can create significant
errors. A misplaced letter or an incorrect
number can cause significant changes to a
tool or program’s intended functions and
interface.

A software bug can disrupt a business’s
ability to generate leads, interact with
users, and facilitate purchases. For
example, an e-commerce website may be
unable to accept payments from
customers. Products might not appear in
the customer’s cart, or payments could be
rejected.

7Leaware

HOW SOFTWARE BUGS CAN BE PREVENTED

The following techniques can help to prevent software bugs:

TDD encourages creating failing tests for
the product before developing the
product. As the development of the
product reaches completion, the test cases
begin to pass, validating the expected
behavior for the product. If tests are
created before the product, the likelihood
of a product reaching its end-users
untested is greatly reduced. TDD can
serve as a powerful technique to prevent
bugs arising due to inadequate testing.

Test-Driven Development (TDD) Behavior Driven Development
(BDD)

CICT emphasizes that every code change
integrated into the central code repository
should be automatically tested with
predefined test cases. Continuous testing
is only possible when automated testing is
implemented and integrated with the
CI/CD system. To achieve CICT, the test
automation system must be integrated
with the build system of the product.

Having a CICT pipeline for the product
makes sure that any regressions or
injections in the product are caught as
soon as they are introduced. This saves
time and resource that could otherwise be
spent searching for changes that caused
the regression or injection.

Continuous Integration Continuous
Testing (CICT)

As the scope for the product evolves the
product specification also evolves. A
dedicated effort may be required to review
and track any updates to specifications.
Proactively capturing specification
updates can help to prevent bugs later in
the implementation of the product.

Specification Review and
Management

BDD encourages the use of a Domain
Specific Language (DSL) between and
within teams. Using DSL reduces
miscommunication among stakeholders.
When BDD is used, tests can be created in
a simple text language like English which
makes it easier for the team to create and
review tests without using complex code
syntax.

This flexibility and transparency between
teams when creating and reviewing test
cases prevent bugs from occurring.
Testsigma is a unified test automation tool
that has taken test automation to a new
level by allowing automation in English.
To know more about Testsigma, Click Here.https://testsigma.com

8Leaware

Open and clear communication among
team members can highlight absent or
conflicting scenarios in specifications. If
every team member is encouraged to
communicate about cases or scenarios
that are missing/conflict with the
specification, issues can be resolved at a
much earlier stage.

Clear Communication Encouraging teams to seek input from
stakeholders and brainstorm expected
behaviors in cases of missing/conflicting
specifications can help to reduce bugs
arising out of assumptions made for
implementation.

One of the main objectives of digital
product development management at
Leaware is to find a way to reduce the
percentage of bugs based on the
complexity of the product's programming.

9Leaware

TYPES OF SOFTWARE TESTING

Functional Testing

Functional testing tests business-critical
features, functionality, and usability. It
ensures that software features and
functionality behave as expected without
any failures. The entire application is
checked against the specifications
outlined in the Software Requirements
Specification (SRS) document. The types
of functional tests include unitary testing,
interface testing, and regression testing.

Unit Testing

Unit testing is the first test that developers
perform during the development stage.
Unit testing tests individual parts/units of a
software application at the beginning of
the SDLC (Software Development Life
cycle). Any function, procedure, method, or
module can be unit tested to determine
whether it works as expected.

Performance Testing

Performance testing is a type of
non-functional testing that is done to
determine the speed, stability, and
scalability of a software application. The
overall goal is to test the performance of an
application against systems and network
criteria such as CPU usage, page loading
speed, traffic peak, and server resource
usage. Within performance testing, there
are several other types of testing such as
load testing and stress testing.

Deep Testing

Deep testing is a type of manual testing
where testers thoroughly and rigorously
test software. The more features and
improvements that are added to the code,
the more tests need to be performed to
ensure that the overall product works. In
addition, it is important to make sure bugs
do not reoccur in subsequent releases.
Automation is the key to this capability
and writing tests will sooner or later
become part of your development process.
With all that said, is it worth doing manual
testing? The short answer is yes and
special attention should be paid to deep
testing to identify non-obvious errors.

The duration of a deep testing session
should not exceed two hours. For deep
testing sessions, it is necessary to specify
what specific element testers need to
focus on.

Integration Testing

Integration testing tests different modules
of a software application as a group. The
software application is made up of various
modules that work together. This type of
testing identifies errors and problems with
the integration of modules.

Non-Functional Testing

Non-functional testing is similar to
functional testing. The main difference is
that these functions are tested under
pressure for observer performance,
reliability, usability, and scalability.
Non-functional testing, such as load and
stress testing, typically uses automation
tools and solutions such as LoadView.

Other types of non-functional testing
include installation testing, reliability
testing, and security testing.

Leaware 10

Exploratory Testing

Exploratory testing is suitable for specific
test scenarios, such as when a user needs
to learn about a product or application
quickly and provide quick feedback. It
helps in assessing the quality of the
product from the user's perspective. In
many software lifecycles, early iteration is
required when teams don't have much
time to structure their tests. Exploratory
testing is very helpful in this scenario.

Test Case

In software engineering, a test case is a
combination of input data, execution
conditions, test procedure, and expected
results that define a single test. This test
achieves a specific software testing goal,
such as executing a specific program path
or verifying compliance with a specific
requirement. Test cases contain data such
as:

• Description of a given test case.

• Steps to be performed from starting the
application.

• Preconditions or conditions must be met
to proceed with the case.

• The expected result and how the
application behaves the steps in the test
have been completed.

It is necessary to familiarize all testers
with the task, after which they can perform
various actions to check the system. This
type of testing is inherently costly but is
highly effective for identifying user
interface issues or testing complex user
processes.

Automated Tests

Automated tests run automatically instead
of manually. They consist of programming
specific clicks in the application as a real
user would do. Testers compare the test
against the expected result to see whether
the software works as it should.

How These Types of Tests
Differ From Each Other

Perhaps you are already aware of the types
of testing mentioned above. All tests focus
on the reliability and readiness of software
applications. However, it is best to explain
the differences between these types of
tests with examples. In this example, the
company has an e-commerce website/app
with standard functionality.

To test how the site will perform when
many users are using the site at the same
time, such as during sales season, load
tests will be needed. This will help to
detect speed and eliminate potential
performance bottlenecks.

To test input and output for each
functionality like check-in, login, add to cart,
checkout, payment processing, and write to
the database, functional testing is needed.

To test the functionality of the cart with
checkout and payment module integration,
integration testing is needed.

To test whether a newly written module for
loading a product is correct and the
products are successfully added without
any errors or defects, unit testing is needed.

Leaware 11

Benefits of These Types of
Tests

Performance Testing:

• Assesses the speed and scalability of a
website or app.
• Identifies bottlenecks to improve
performance.
• Finds errors that are overlooked in
functional testing.
• System optimization and function
enhancements.
• Ensures the site will be reliable at peak
points.

Functional Testing:

• Makes sure the website or app is free of
defects.
• Ensures functions behave as expected.
• Ensures that the architecture is correct
and has appropriate security.
• Improves the overall quality and
functionality.
• Minimizes business risks associated
with the website or app.

Integration Testing:

• Ensures that all application modules are
well integrated and work as expected.
• Detects interrelated issues and
proactively resolves them.
• Checks functionality, reliability, and
stability between different modules.
• Detects missed exceptions to improve
code quality.
• Supports the CI/CD pipeline.

Unit Testing:

• Detects bugs early in newly developed
functionalities or features.
• Minimizes testing costs as problems are
identified early.
• Improves code quality with better code
refactoring.
• Supports the agile development
process.
• Simplifies integration and allows good
documentation.

When to Run These Types of
Tests

At Leaware, we give you the confidence
that each benefit we have listed is closely
aligned with how we develop digital
products. Performance testing is essential
in all development and production
environments to make sure the software
product works as expected and can handle
the expected user load. Functional testing
should be done with every build to verify
changes and make sure that features match
the product’s specification.

Integration testing should be done when
integrating a new piece of code with
another module to make sure there are no
conflicts and they work together correctly.
Developers complete one-time testing
whenever they write code to check the
correct input and output.

Leaware 12

QUALITY MANAGEMENT

At the present level of development, quality is a complex
component, including the quality of the final product,
management, delivery or work, and life of users. Quality
management is a coordinated and interrelated management
activity, built in such a way as to ensure the reliable and
uninterrupted operation of the organization.

To develop a quality management for
information systems implementation
projects, it is necessary to compile
procedures for the regulations. One of the
main components of project management
is to prevent loss of value by reducing the
quality of the product or service.
Companies that provide services for the
implementation of information systems
accumulate knowledge about emerging
problems and attempt to prevent future
problems.

Organizational management – in the
context of quality – means that all
activities are reaching benchmarks. To
meet these benchmarks, the organization
needs to have a developed system of
plans, necessary resources, and take
action to achieve goals.

LOW HIGH

MEDIUM

QUALITY

Quality Management of the
Project

Quality management at Leaware is a
support process with a significant impact
on management decisions.

Leaware 13

Quality management has four main
components:

• Quality control.

• Quality assurance.

• Quality planning.

• Quality improvement.

QC assesses whether the object of control
meets requirements. Evaluation activities
may include measurements, tests,
observations, monitoring, verification,
calibration, and other activities that compare
the values of observed characteristics with
specified ones.

QA is a systematic activity that fulfills
requirements. It includes production,
management, logistics, and maintenance.

Quality planning ascertains the necessary
characteristics of an object and sets target
values. Quality planning also determines the
processes and resources needed to achieve
objectives.

Quality improvement is an action that
improves the organization’s ability to meet
requirements. Fixed improvement considers
products, processes, management systems,
and the organization.

Quality management is a voluminous
section of applied science, which contains
the philosophy of quality management
theory and practical methods.

Leaware 14

QUALITY CONTROL AND TESTING

Testing

Quality Control

Quality Assurance

QA specialists monitor the quality of the
tester’s work and the entire development
process. The underlying goal is to create a
system that will minimize the number of
errors and facilitate testing. For example,
this could mean introducing an improved
scheduling system, so that both developers
and testers have enough time to do quality
work. QA may include checking the code
for compliance against existing standards,
checking documents, and implementing
new QC methods.

Quality Assurance

Quality Control

Testing

To do this, the priority and number of
errors are evaluated. If critical defects
remain in the software, the QC specialist
will send the product back to the testing
process so the errors can be removed. The
main goal of this process is to assess the
overall quality of the product.

There is testing at this stage, but QC is not
only about that. Similarly to the first stage,
this process checks compliance and
assesses the quality of the product to
determine whether it’s ready for release.

Testing is the initial level of control. During
the testing process, the software is checked
against the brief to make sure that it meets
the requirements. In this process, the
software is checked for compliance, testers
make sure that the software meets the
criteria, all defects identified are resolved,
and the product is re-checked to ensure that
all inconsistencies are removed. Testing is
not just clicking the mouse on a certain plan.
To complete the testing process, the
company will need to have an automated
testing process or an experienced developer.
The main goal of this process is to find as
many defects as possible and identify why
they have occurred. At Leaware we have
10+ years of experience completing this
process for our clients.

Leaware 15

TEST AUTOMATION

1
2
3

Machine Process Innovation Autonomous Productivity Repeatability Improvement

In addition to test automation, certain kinds
of innovations help make software testing
easier and more efficient like scriptless test
automation. This involves a system where
programmers don't need to write scripts for
each test case. By using reusable code
assets, scriptless test automation resources
can help companies test software in a less
labor-intensive way.

After receiving a project, Leaware first
analyze which modules of the system are
suitable for automated testing, understand
the significance of automated testing
implementation, and the value it can bring.
If automated testing is carried out blindly
and without purpose, results are likely to be
meaningless.

Test automation is a term used in software
testing, other IT-related testing, and QA.
Test automation generates tests without
human input. Different types of test
automation help businesses to achieve
goals such as software testing with fewer
resources which makes the testing process
more efficient.

Automated Testing Process

Before carrying out automated testing
tasks, it is necessary to understand and
master the process of implementing
automated testing. Without mastering the
automated testing process, you will not be
able to carry out automated testing tasks
smoothly. The test process for automated
testing and functional testing are similar.
The content of this article is summed up
based on years of the author's automated
testing experience.

Leaware 16

Refactor

Communicate

Prepare

Write

Execute

Evaluate

Repeat

Automation testing
Process

Before automated testing can be performed,
the test environment needs to be prepared.
The test environment generally includes a
tool installation environment and an
automated test environment. If you use
Selenium and Appium to carry out
automated testing, you must install a
language environment, such as Python or
Java. It is also important to consider
continuous integration environments and
version management at this point.

Test Scheme Selection Preparation of the Test
Environment

When many automated test cases are
written, completing maintenance on the
test cases becomes difficult. Common
elements used in test cases, such as test
data, configuration files, and log files need
to be stored separately. This is because in
the development, the test project is often
completed by a team rather than an
individual.

Test Framework Design

Test scheme selection is the selection of
test tools. When carrying out automated
testing tasks, you must first choose which
implementation method to use. The most
common method is tool recording or
encoding and the author recommends the
latter. More developer-defined functions
can be implemented through coding,
especially when there are many test
cases, maintenance, test data
management, and other issues that
should be considered.

At present, the more mainstream
automated testing frameworks are
Selenium, Robot Framework, Appium,
Roboium, and MonkeyRunner. When
selecting the test plan, the development
language, project architecture, and project
environment used by the project team
should be considered.

Leaware 17

After the automated test case is executed,
workers can learn how many test cases
were executed in this test, the number of
passes and failures, and the reasons for
any failures from the test report. They can
also build automation tasks at regular
intervals through Jenkins. If a code
submission or an update is needed, the
automatic build automation task will
trigger, generating test results that are
sent to the relevant person.

Test Case Execution

Which Test Cases Should be Automated?

To increase the automation ROI, test cases
for automation can be selected based on
the following criteria:

• High risks and failures are unacceptable,
which is extremely important for sectors
such as banking.
• Test scenarios are regularly repeated.
• Test scripts are very complex and tedious
to execute manually.
• Time-consuming test cases.

Production
To test

Experienced IT professionals know firsthand
that even a very well-tested product may
not work in real-life settings. Therefore, it is
good practice to run existing regression tests
in a productive environment. The CRUD
(Create, Read, Update, and Delete) method
can be used to divide auto-tests into groups.
In a productive environment, it is often only
possible to run only R tests that do not
change any data. Despite this limitation,
automated testing in a productive
environment is a critical step in a product's
release.

Test Automation in a Productive
Environment

When Not to Use Automation

The following are examples of when it
would be inappropriate to use automation
for test cases:

• New test cases that have not been run
manually at least once.
• Test scenarios where the requirements
change frequently.
• Test cases that are run on an ad hoc basis.

Leaware 18

This stage of automated testing is carried
out to check whether new features added to
the software work. Automated testing
maintenance occurs when new automation
scripts need to be tested to maintain and
improve the effectiveness of the automation
scripts with each successive release cycle.

Maintenance of Automated
Testing

To maximize the ROI on your automation
investment, follow these guidelines:

• The scope of automation needs to be
defined in detail before the start of the
project. This makes sure that expectations
are met.

• Determine the right automation tool. The
tool should not be chosen based on its
popularity. Instead, it should match the
automation requirements of the project that is
being worked on.

Best Practice for Effective Test
Automation

• Choose the right framework.

• Scripting standards must be followed
when writing scripts for automation. Some
of the main standards are:

-Create unified scripts, comments, and code
indents.

-Develop rules for naming test scenarios.

-Attach the necessary documents if, for
example, it is difficult to understand the
passage of a test scenario without a
screenshot and/or specification.

-Define metrics and track them. The success
of automation cannot be determined only by
comparing the effort expended on another
type of testing.

-The main metrics are the percentage of
detected defects, the time required to test
the release automation, minimum time
required for release, customer satisfaction
index, and performance improvement.

Leaware 19

CONCLUSION

Performance testing is essential for all development and
production environments to ensure your website or application is
up to speed and can handle the expected user load. Functional
testing should be done with every build to verify changes and to
make sure that features match the specifications and
requirements. Integration testing should be done when
integrating a new piece of code to make sure there are no
conflicts. One-time testing should be done by developers
whenever they write any code to check the correct input and
output. At Leaware, we fervently believe that QC and
management in automated processes had a positive impact on
the creation, design, and development of digital products.

ABOUT THE AUTHORS

Since 2010,
LEAWARE has been

helping start-ups and
already established

companies build and
develop their digital

solutions, making them
grow, boost their

businesses, and succeed.

Contact us

ask@leaware.com
Visit our website

www.leaware.com

Or see our Clutch profile

Follow us on social media

https://clutch.co/profile/leaware#summary

Tom Soroka
Leaware Founder

Business Development Manager

Damian Wasilewski
Project Manager

Business Development Manager

Carlos Lopes
Marketing Specialist

Business Development Manager

https://www.instagram.com/leaware_sd/?hl=es-lahttps://twitter.com/leawarecom https://www.facebook.com/leawarecom/?hc_ref=ARRaP2So7yzgRwN0EbaEFWvPYOCP2m5irHX87SFc6udfj-iM2rQ0KPS9F5U5bpXvkgs&fref=nf&__xts__[0]=68.ARBt74MyoA-CY7VBlVdY5U2gQ_XxlgtKROVIpsBOShERjtPoxmEmTk5YRaLtm2jhHkG3wnF59xSaR4FGRkQ88EQEYCRCeuLfPu02rjkIDT7akwnRtnXFq7IGARYPyH8-fVLECNLIj8rpH-NjTziI8ymMReaJRLI_dp9QlV6rC6fS_OK36MmHB0ZMKMdC9qNfTBouMm2QlBjjMh9WSCL_JYf3k-8WdlKTc4MIfPvtK869oy9pQ49NoW3XkXO8ZuZIqTly4uuOyZugAPnV9bJv9el04Sc6qe_ymqz_-zec6fQfE9p3g9I55EmYMRYqAZdsXQ https://www.linkedin.com/company/leaware-com/mycompany/ https://www.youtube.com/channel/UCQCk5_j0P1Q37YkwjMSUZtA

Leaware 20

Thanks for reading!

To receive more of our "QA in Product
Development" scan the QR code below.

We build the right software.
We build the software right.

